

 ITRS-Log-Analytics-7.x

 7.2.0

 	About
	Installation

	Configuration	Changing default users for services	Change Kibana User
	Change Elasticsearch User
	Change Logstash User

	Plugins management	Installing Plugins
	Listing plugins
	Removing plugins
	Updating plugins

	Transport layer encryption	Generating Certificates	Setting up configuration files
	Logstash/Beats

	Browser layer encryption	Configuration steps

	Building a cluster	Node roles
	Naming convention
	Config files
	Example setup
	Adding a new node to existing cluster

	Authentication with Active Directory	Configure SSL suport for AD authentication
	Role mapping
	Password encryption

	Authentication with Radius	Configuration

	Authentication with LDAP	Configuration

	Configuring Single Sign On (SSO)	Configuration steps
	Client (Browser) Configuration##	Internet Explorer configuration
	Chrome configuration
	Firefox configuration

	Default home page
	Configure email delivery	Configure email delivery for sending PDF reports in Scheduler.
	Basic postfix configuration
	Example of postfix configuration with SSL encryption enabled

	Custom notification on workstation
	Agents module	Preparations
	Installation of MasterAgent - Server Side
	Installation of Agent - Client Side
	Windows Agent - software installed on clients running on Windows OS:
	Beats - configuration templates

	Windows Agent installation	Agent module compatibility
	Beats agents installation	Windows
	Filebeat
	Merticbeat
	Packetbeat

	Linux	Filebeat
	Merticbeat
	Packetbeat

	Kafka	The Kafka installation

	Kafka encryption	Configuring Kafka Brokers
	Configuring Kafka Clients
	Log retention for Kafka topic

	Event Collector	Configuration steps	Installation of Event Collector
	Generate certificate
	Event Collector Configuration
	Install dependencies
	Running Event Collector service
	Windows host configuration
	Logstash pipeline configuration
	Enabling Logstash pipeline
	Elasticsearch template
	Building the subscription filter

	Cerebro Configuration
	Field level security
	Changing default language for GUI

	Upgrades

	User Manual

	Log Management Plan

	SIEM Plan

	Troubleshooting

	Monitoring

	API

	Integrations

	CHANGELOG

 ITRS-Log-Analytics-7.x

 	Docs »
	Configuration
	

 Edit on GitHub

Configuration¶

Changing default users for services¶

Change Kibana User¶

Edit file /etc/systemd/system/kibana.service

	User=newuser
	Group= newuser

Edit /etc/default/kibana

	user=" newuser "
	group=" newuser "

Add appropriate permission:

	chown newuser: /usr/share/kibana/ /etc/kibana/ -R

Change Elasticsearch User¶

Edit /usr/lib/tmpfiles.d/elasticsearch.conf and change user name and group:

	d /var/run/elasticsearch 0755 newuser newuser –

Create directory:

	mkdir /etc/systemd/system/elasticsearch.service.d/

Edit /etc/systemd/system/elasticsearch.service.d/01-user.conf

	[Service]
	User=newuser
	Group= newuser

Add appropriate permission:

	chown -R newuser: /var/lib/elasticsearch /usr/share/elasticsearch /etc/elasticsearch /var/log/elasticsearch

Change Logstash User¶

Create directory:

	mkdir /etc/systemd/system/logstash.service.d

Edit /etc/systemd/system/logstash.service.d/01-user.conf

	[Service]
	User=newuser
	Group=newuser

Add appropriate permission:

	chown -R newuser: /etc/logstash /var/log/logstash

Plugins management¶

Base installation of the ITRS Log Analytics contains the
elasticsearch-auth plugin.
You can extend the basic Elasticsearch functionality by installing the custom plugins.

Plugins contain JAR files, but may also contain scripts and config files, and must be installed on every node in the cluster.

After installation, each node must be restarted before the plugin becomes visible.

The Elasticsearch provides two categories of plugins:

	Core Plugins - it is plugins that are part of the Elasticsearch project.
	Community contributed - it is plugins that are external to the Elasticsearch project

Installing Plugins¶

Core Elasticsearch plugins can be installed as follows:

cd /usr/share/elasticsearch/
bin/elasticsearch-plugin install [plugin_name]

Example:

bin/elasticsearch-plugin install ingest-geoip

-> Downloading ingest-geoip from elastic
[===] 100%
@@@
@ WARNING: plugin requires additional permissions @
@@@
* java.lang.RuntimePermission accessDeclaredMembers
* java.lang.reflect.ReflectPermission suppressAccessChecks
See http://docs.oracle.com/javase/8/docs/technotes/guides/security/permissions.html
for descriptions of what these permissions allow and the associated risks.

Continue with installation? [y/N]y
-> Installed ingest-geoip

Plugins from custom link or filesystem can be installed as follow:

cd /usr/share/elasticsearch/
sudo bin/elasticsearch-plugin install [url]

Example:

sudo bin/elasticsearch-plugin install file:///path/to/plugin.zip
bin\elasticsearch-plugin install file:///C:/path/to/plugin.zip
sudo bin/elasticsearch-plugin install http://some.domain/path/to/plugin.zip

Listing plugins¶

Listing currently loaded plugins

sudo bin/elasticsearch-plugin list

listing currently available core plugins:

sudo bin/elasticsearch-plugin list --help

Removing plugins¶

sudo bin/elasticsearch-plugin remove [pluginname]

Updating plugins¶

sudo bin/elasticsearch-plugin remove [pluginname]
sudo bin/elasticsearch-plugin install [pluginname]

Transport layer encryption¶

Generating Certificates¶

	Requirements for certificate configuration:

	To encrypt traffic (HTTP and transport layer) of Elasticsearch you have to generate certificate authority which will be used to sign each node certificate of a cluster.
	Elasticsearch certificate has to be generated in pkcs8 RSA format.

	Example certificate configuration (Certificates will be valid for 10 years based on this example):

To make this process easier prepare some variables:
DOMAIN=mylocal.domain
DOMAIN_IP=10.4.3.185 # This is required if certificate validation is used on trasport layer
COUNTRYNAME=PL
STATE=Poland
COMPANY=LOGTEST

Generate CA key:
openssl genrsa -out rootCA.key 4096

Create and sign root certificate:
echo -e "${COUNTRYNAME}\n${STATE}\n\n${COMPANY}\n\n\n\n" | openssl req -x509 -new -nodes -key rootCA.key -sha256 -days 3650 -out rootCA.crt

Crete RSA key for domain:
openssl genrsa -out ${DOMAIN}.pre 2048

Convert generated key to pkcs8 RSA key for domain hostname
(if you do not want to encrypt the key add "-nocrypt" at the end of the command; otherwise it will be necessary to add this password later in every config file):
openssl pkcs8 -topk8 -inform pem -in ${DOMAIN}.pre -outform pem -out ${DOMAIN}.key

Create a Certificate Signing Request (openssl.cnf can be in a different location; this is the default for CentOS 7.7):
openssl req -new -sha256 -key ${DOMAIN}.key -subj "/C=PL/ST=Poland/O=EMCA/CN=${DOMAIN}" -reqexts SAN -config <(cat /etc/pki/tls/openssl.cnf <(printf "[SAN] \nsubjectAltName=DNS:${DOMAIN},IP:${DOMAIN_IP}")) -out ${DOMAIN}.csr

Generate Domain Certificate
openssl x509 -req -in ${DOMAIN}.csr -CA rootCA.crt -CAkey rootCA.key -CAcreateserial -out ${DOMAIN}.crt -sha256 -extfile <(printf "[req] \ndefault_bits=2048\ndistinguished_name=req_distinguished_name\nreq_extensions=req_ext\n[req_distinguished_name]\ncountryName=${COUNTRYNAME}\nstateOrProvinceName=${STATE} \norganizationName=${COMPANY}\ncommonName=${DOMAIN}\n[req_ext]\nsubjectAltName=@alt_names\n[alt_names]\nDNS.1=${DOMAIN}\nIP=${DOMAIN_IP}\n") -days 3650 -extensions req_ext

Verify the validity of the generated certificate
openssl x509 -in ${DOMAIN}.crt -text -noout

	Right now you should have these files:

$ ls -1 | sort
mylocal.domain.test.crt
mylocal.domain.test.csr
mylocal.domain.test.key
mylocal.domain.test.pre
rootCA.crt
rootCA.key
rootCA.srl

	Create a directory to store required files (users: elasticsearch, kibana and logstash have to be able to read these files):

mkdir /etc/elasticsearch/ssl
cp {mylocal.domain.test.crt,mylocal.domain.test.key,rootCA.crt} /etc/elasticsearch/ssl
chown -R elasticsearch:elasticsearch /etc/elasticsearch/ssl
chmod 755 /etc/elasticsearch/ssl
chmod 644 /etc/elasticsearch/ssl/*

Setting up configuration files¶

	Append or uncomment below lines in /etc/elasticsearch/elasticsearch.yml and change paths to proper values (based on past steps):

	Transport layer encryption

logserverguard.ssl.transport.enabled: true
logserverguard.ssl.transport.pemcert_filepath: "/etc/elasticsearch/ssl/mylocal.domain.test.crt"
logserverguard.ssl.transport.pemkey_filepath: "/etc/elasticsearch/ssl/mylocal.domain.test.key"
logserverguard.ssl.transport.pemkey_password: "password_for_pemkey" # if there is no password leve ""
logserverguard.ssl.transport.pemtrustedcas_filepath: "/etc/elasticsearch/ssl/rootCA.crt"

logserverguard.ssl.transport.enforce_hostname_verification: true
logserverguard.ssl.transport.resolve_hostname: true

logserverguard.ssl.transport.enabled_ciphers:
 - "TLS_DHE_RSA_WITH_AES_128_GCM_SHA256"
 - "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256"

logserverguard.ssl.transport.enabled_protocols:
 - "TLSv1.2"

	HTTP layer encryption

logserverguard.ssl.http.enabled: true
logserverguard.ssl.http.pemcert_filepath: "/etc/elasticsearch/ssl/mylocal.domain.test.crt"
logserverguard.ssl.http.pemkey_filepath: "/etc/elasticsearch/ssl/mylocal.domain.test.key"
logserverguard.ssl.http.pemkey_password: "password_for_pemkey" # if there is no password leve ""
logserverguard.ssl.http.pemtrustedcas_filepath: "/etc/elasticsearch/ssl/rootCA.crt"

logserverguard.ssl.http.clientauth_mode: OPTIONAL
logserverguard.ssl.http.enabled_ciphers:
 - "TLS_DHE_RSA_WITH_AES_128_GCM_SHA256"
 - "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256"

logserverguard.ssl.http.enabled_protocols:
 - "TLSv1.2"

	Append or uncomment below lines in /etc/kibana/kibana.yml and change paths to proper values:

elasticsearch.hosts: ["https://127.0.0.1:8000"]

Elasticsearch trafic encryption
There is also an option to use "127.0.0.1/localhost" and to not supply path to CA. Verification Mode should be then changed to "none".
elasticsearch.ssl.verificationMode: full
elasticsearch.ssl.certificate: "/etc/elasticsearch/ssl/mylocal.domain.test.crt"
elasticsearch.ssl.key: "/etc/elasticsearch/ssl/mylocal.domain.test.key"
elasticsearch.ssl.keyPassphrase: "password_for_pemkey" # this line is not required if there is no password
elasticsearch.ssl.certificateAuthorities: "/etc/elasticsearch/ssl/rootCA.crt"

	Append or uncomment below lines in /opt/alert/config.yaml and change paths to proper values:

Connect with TLS to Elasticsearch
use_ssl: True

Verify TLS certificates
verify_certs: True

Client certificate
client_cert: /etc/elasticsearch/ssl/mylocal.domain.test.crt
client_key: /etc/elasticsearch/ssl/mylocal.domain.test.key
ca_certs: /etc/elasticsearch/ssl/rootCA.crt

	For CSV/HTML export to work properly rootCA.crt generated in first step has to be “installed” on the server. Below example for CentOS 7:

Copy rootCA.crt and update CA trust store
cp /etc/elasticsearch/ssl/rootCA.crt /etc/pki/ca-trust/source/anchors/rootCA.crt
update-ca-trust

	Intelligence module. Generate pkcs12 keystore/cert:

DOMAIN=mylocal.domain.test
keytool -import -file /etc/elasticsearch/ssl/rootCA.crt -alias root -keystore root.jks
openssl pkcs12 -export -in /etc/elasticsearch/ssl/${DOMAIN}.crt -inkey /etc/elasticsearch/ssl/${DOMAIN}.key -out ${DOMAIN}.p12 -name "${DOMAIN}" -certfile /etc/elasticsearch/ssl/rootCA.crt

Configure /opt/ai/bin/conf.cfg
https_keystore=/path/to/pk12/mylocal.domain.test.p12
https_truststore=/path/to/root.jks
https_keystore_pass=bla123
https_truststore_pass=bla123

Logstash/Beats¶

You can eather install CA to allow Logstash and Beats traffic or you can supply required certificates in config:

	Logstash:

output {
 elasticsearch {
 hosts => "https://mylocal.domain.test:9200"
 ssl => true
 index => "winlogbeat-%{+YYYY.MM}"
 user => "logstash"
 password => "logstash"
 cacert => "/path/to/cacert/rootCA.crt"
 }
}

	Beats:

output.elasticsearch.hosts: ["https://mylocal.domain.test:9200"]
output.elasticsearch.protocol: "https"
output.elasticsearch.ssl.enabled: true
output.elasticsearch.ssl.certificate_authorities: ["/path/to/cacert/rootCA.crt"]

Additionally, for any beats program to be able to write to elasticsearch, you will have to make changes to “enabled_ciphers” directive in “/etc/elasticsearch/elasticsearch.yml”. This is done by commenting:

logserverguard.ssl.http.enabled_ciphers:
- "TLS_DHE_RSA_WITH_AES_256_GCM_SHA384"

Otherwise, the beat will not be able to send documents directly and if you want to avoid it you can send a document with Logstash first.

Browser layer encryption¶

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) provide encryption for data-in-transit. While these terms are often used interchangeably, ITRS Log Analytics GUI supports only TLS, which supersedes the old SSL protocols. Browsers send traffic to ITRS Log Analytics GUI and ITRS Log Analytics GUI sends traffic to Elasticsearch database. These communication channels are configured separately to use TLS. TLS requires X.509 certificates to authenticate the communicating parties and perform encryption of data-in-transit. Each certificate contains a public key and has an associated — but separate — private key; these keys are used for cryptographic operations. ITRS Log Analytics GUI supports certificates and private keys in PEM format and support TLS 1.3 version.

Configuration steps¶

	Obtain a server certificate and private key for ITRS Log Analytics GUI.

Kibana will need to use this “server certificate” and corresponding private key when receiving connections from web browsers.

When you obtain a server certificate, you must set its subject alternative name (SAN) correctly to ensure that modern web browsers with hostname verification will trust it. You can set one or more SANs to the ITRS Log Analytics GUI server’s fully-qualified domain name (FQDN), hostname, or IP address. When choosing the SAN, you should pick whichever attribute you will be using to connect to Kibana in your browser, which is likely the FQDN in a production environment.

	Configure ITRS Log Analytics GUI to access the server certificate and private key.

vi /etc/kibana/kibana.yml

server.ssl.enabled: true
server.ssl.supportedProtocols: ["TLSv1.3"]
server.ssl.certificate: "/path/to/kibana-server.crt"
server.ssl.key: "/path/to/kibana-server.key"

	Set HTTPS in configuration file for the License server:

vi /opt/license-service/license-service.conf

elasticsearch_connection:
 hosts: ["els_host_IP:9200"]

 username: license
 password: "license_user_password"

 https: true

Building a cluster¶

Node roles¶

Every instance of Elasticsearch server is called a node.
A collection of connected nodes is called a cluster.
All nodes know about all the other nodes in the cluster
and can forward client requests to the appropriate node.

Besides that, each node serves one or more purpose:

	Master-eligible node - A node that has node.master set to true (default), which makes it eligible to be elected as the master node, which controls the cluster
	Data node - A node that has node.data set to true (default). Data nodes hold data and perform data related operations such as CRUD, search, and aggregations
	Client node - A client node has both node.master and node.data set to false. It can neither hold data nor become the master node. It behaves as a “smart router” and is used to forward cluster-level requests to the master node and data-related requests (such as search) to the appropriate data nodes
	Tribe node - A tribe node, configured via the tribe.* settings, is a special type of client node that can connect to multiple clusters and perform search and other operations across all connected clusters.

Naming convention¶

Elasticsearch require little configuration before before going into work.

The following settings must be considered before going to production:

	path.data and path.logs - default locations of these files are:
/var/lib/elasticsearchand /var/log/elasticsearch.
	cluster.name - A node can only join a cluster when it shares its
cluster.name with all the other nodes in the cluster. The default name
is “elasticsearch”, but you should change it to an appropriate name which
describes the purpose of the cluster. You can do this in /etc/elasticsearch/elasticsearch.yml file.
	node.name - By default, Elasticsearch will use the first seven characters of the randomly
generated UUID as the node id. Node id is persisted and does not change when a node restarts.
It is worth configuring a more human readable name: node.name: prod-data-2
in file /etc/elstaicsearch/elasticsearch.yml
	network.host - parametr specifying network interfaces to which Elasticsearch can bind.
Default is network.host: ["_local_","_site_"].
	discovery - Elasticsearch uses a custom discovery implementation called “Zen Discovery”.
There are two important settings:	discovery.zen.ping.unicast.hosts - specify list of other nodes in the cluster that are
likely to be live and contactable;
	discovery.zen.minimum_master_nodes - to prevent data loss, you can configure this setting
so that each master-eligible node knows the minimum number of master-eligible nodes that must
be visible in order to form a cluster.

	heap size - By default, Elasticsearch tells the JVM to use a heap with a minimum (Xms) and maximum (Xmx)
size of 1 GB. When moving to production, it is important to configure heap size to ensure that
Elasticsearch has enough heap available

Config files¶

To configure the Elasticsearch cluster you must specify some parameters
in the following configuration files on every node that will be connected to the cluster:

	/etc/elsticsearch/elasticserach.yml:	cluster.name:name_of_the_cluster - same for every node;
	node.name:name_of_the_node - uniq for every node;
	node.master:true_or_false
	node.data:true_or_false
	network.host:["_local_","_site_"]
	discovery.zen.ping.multicast.enabled
	discovery.zen.ping.unicast.hosts

	/etc/elsticsearch/log4j2.properties:	logger: action: DEBUG - for easier debugging.

Example setup¶

Example of the Elasticsearch cluster configuration:

	file /etc/elasticsearch/elasticsearch.yml:

 cluster.name: tm-lab
 node.name: "elk01"
 node.master: true
 node.data: true
 network.host: 127.0.0.1,10.0.0.4
 http.port: 9200
 discovery.zen.ping.multicast.enabled: false
 discovery.zen.ping.unicast.hosts: ["10.0.0.4:9300","10.0.0.5:9300","10.0.0.6:9300"]

	to start the Elasticsearch cluster execute command:

 # systemctl restart elasticsearch

	to check status of the Elstaicsearch cluster execute command:

	check of the Elasticsearch cluster nodes status via tcp port:

 # curl -XGET '127.0.0.1:9200/_cat/nodes?v'

 host 	 ip heap.percent ram.percent load node.role master name
 10.0.0.4 	 10.0.0.4 18 91 		 0.00 - - elk01
 10.0.0.5 	 10.0.0.5 66 91 		 0.00 d * elk02
 10.0.0.6 	 10.0.0.6 43 86 	 0.65 d m elk03
 10.0.0.7 	 10.0.0.7 45 77 	 0.26 d m elk04

	check status of the Elasticsearch cluster via log file:

 # tail -f /var/log/elasticsearch/tm-lab.log (cluster.name)

Adding a new node to existing cluster¶

Install the new ITRS Log Analytics instance. The description of the installation can be found in the chapter “First configuration steps”

Change the following parameters in the configuration file:

	cluster.name:name_of_the_cluster same for every node;
	node.name:name_of_the_node uniq for every node;
	node.master:true_or_false
	node.data:true_or_false
	discovery.zen.ping.unicast.hosts:[”10.0.0.4:9300”,”10.0.0.5:9300”,”10.0.0.6:9300”] - IP addresses and instances of nodes in the cluster.

If you add a node with the role data, delete the contents of the path.data directory, by default in /var/lib/elasticsearch

Restart the Elasticsearch instance of the new node:

systemctl restart elasticsearch

Authentication with Active Directory¶

The AD configuration should be done in the /etc/elasticsearch/properties.yml
file.

Below is a list of settings to be made in the properties.yml file
(the commented section in the file in order for the AD settings to
start working, this fragment should be uncommented):

Direcitve	**Description**
# LDAP	
#ldaps:	
# - name: \"example.com\"	# domain that is configured
# host: \"127.0.0.1,127.0.0.2\"	# list of server for this domain
# port: 389	# optional, default 389 for unencrypted session or 636 for encrypted sessions
# ssl_enabled: false	# optional, default true
# ssl_trust_all_certs: true	# optional, default false
# ssl.keystore.file: \"path\"	# path to the truststore store
# ssl.keystore.password: \"path\"	# password to the trusted certificate store
# bind_dn: [[admin\@example.com]	# account name administrator
# bind_password: \"password\"	# password for the administrator account
# search_user_base_DN: \"OU=lab,DC=example,DC=com\"	# search for the DN user tree database
# user_id_attribute: \"uid	# search for a user attribute optional, by default \"uid\"
# search_groups_base_DN:\"OU=lab,DC=example,DC=com\"	# group database search. This is a catalog main, after which the groups will be sought.
# unique_member_attribute: \"uniqueMember\"	# optional, default\"uniqueMember\"
# connection_pool_size: 10	# optional, default 30
# connection_timeout_in_sec: 10	# optional, default 1
# request_timeout_in_sec: 10	# optional, default 1
# cache_ttl_in_sec: 60	# optional, default 0 - cache disabled

If we want to configure multiple domains, then in this configuration
file we copy the # LDAP section below and configure it for the next
domain.

Below is an example of how an entry for 2 domains should look
like. (It is important to take the interpreter to read these values
correctly).

ldaps:
 - name: "example1.com"
 host: "127.0.0.1,127.0.0.2"
 port: 389 # optional, default 389
 ssl_enabled: false # optional, default true
 ssl_trust_all_certs: true # optional, default false
 bind_dn: "admin@example1.com"
 bind_password: "password" # generate encrypted password with /usr/share/elasticsearch/pass-encrypter/pass-encrypter.sh
 search_user_base_DN: "OU=lab,DC=example1,DC=com"
 user_id_attribute: "uid" # optional, default "uid"
 search_groups_base_DN: "OU=lab,DC=example1,DC=com"
 unique_member_attribute: "uniqueMember" # optional, default "uniqueMember"
 connection_pool_size: 10 # optional, default 30
 connection_timeout_in_sec: 10 # optional, default 1
 request_timeout_in_sec: 10 # optional, default 1
 cache_ttl_in_sec: 60 # optional, default 0 - cache disabled
 service_principal_name: "esauth@example1.com" # optional, for sso
 service_principal_name_password : "password" # optional, for sso
 - name: "example2.com" #DOMAIN 2
 host: "127.0.0.1,127.0.0.2"
 port: 389 # optional, default 389
 ssl_enabled: false # optional, default true
 ssl_trust_all_certs: true # optional, default false
 bind_dn: "admin@example2.com"
 bind_password: "password" # generate encrypted password with /usr/share/elasticsearch/pass-encrypter/pass-encrypter.sh
 search_user_base_DN: "OU=lab,DC=example2,DC=com"
 user_id_attribute: "uid" # optional, default "uid"
 search_groups_base_DN: "OU=lab,DC=example2,DC=com"
 unique_member_attribute: "uniqueMember" # optional, default "uniqueMember"
 connection_pool_size: 10 # optional, default 30
 connection_timeout_in_sec: 10 # optional, default 1
 request_timeout_in_sec: 10 # optional, default 1
 cache_ttl_in_sec: 60 # optional, default 0 - cache disabled
 service_principal_name: "esauth@example2.com" # optional, for sso
 service_principal_name_password : "password" # optional, for ssl

After completing the LDAP section entry in the properties.yml file,
save the changes and restart the service with the command:

systemctl restart elasticsearch

Configure SSL suport for AD authentication¶

Open the certificate manager on the AD server.

Select the certificate and open it

Select the option of copying to a file in the Details tab

Click the Next button

Keep the setting as shown below and click Next

Keep the setting as shown below and click Next.

Give the name a certificate

After the certificate is exported, this certificate should be imported
into a trusted certificate file that will be used by the Elasticsearch
plugin.

To import a certificate into a trusted certificate file, a tool called
„keytool.exe” is located in the JDK installation directory.

Use the following command to import a certificate file:

keytool -import -alias adding_certificate_keystore -file certificate.cer -keystore certificatestore

The values for RED should be changed accordingly.

By doing this, he will ask you to set a password for the trusted
certificate store. Remember this password, because it must be set in
the configuration of the Elasticsearch plugin. The following settings
must be set in the properties.yml configuration for
SSL:

ssl.keystore.file: "<path to the trust certificate store>"
ssl.keystore.password: "< password to the trust certificate store>"

Role mapping¶

In the /etc/elasticsearch/properties.yml configuration file you can find
a section for configuring role mapping:

LDAP ROLE MAPPING FILE`
rolemapping.file.path: /etc/elasticsearch/role-mappings.yml

This variable points to the file /etc/elasticsearch/role-mappings.yml
Below is the sample content for this file:

admin:	
"CN=Admins,OU=lab,DC=dev,DC=it,DC=example,DC=com"
bank:
"CN=security,OU=lab,DC=dev,DC=it,DC=example,DC=com"

Attention. The role you define in the role.mapping file must be created in the ITRS Log Analytics.

How to the mapping mechanism works ?
An AD user log in to ITRS Log Analytics. In the application there is a
admin role, which through the file role-mapping .yml binds to the name
of the admin role to which the Admins container from AD is assigned.
It is enough for the user from the AD account to log in to the
application with the privileges that are assigned to admin role in
the ITRS Log Analytics. At the same time, if it is the first login in
the ITRS Log Analytics, an account is created with an entry that informs the
application administrator that is was created by logging in with AD.

Similar, the mechanism will work if we have a role with an arbitrary
name created in ITRS Log Analytics Logistics and connected to the name of the
role-mappings.yml and existing in AD any container.

Below a screenshot of the console on which are marked accounts that
were created by uesrs logging in from AD

If you map roles with from several domains, for example
dev.examloe1.com, dev.example2.com then in User List we will see which
user from which domain with which role logged in ITRS Log Analytics.

Password encryption¶

For security reason you can provide the encrypted password for Active Directory integration.
To do this use pass-encrypter.sh script that is located in the Utils directory in installation folder.

	Installation of pass-encrypter

cp -pr /instalation_folder/elasticsearch/pass-en00

000crypter /usr/share/elasticsearch/

	Use pass-encrypter

 # /usr/share/elasticsearch/utils/pass-encrypter/pass-encrypter.sh
 Enter the string for encryption :
 new_password
 Encrypted string : MTU1MTEwMDcxMzQzMg==1GEG8KUOgyJko0PuT2C4uw==

Authentication with Radius¶

To use the Radius protocol, install the latest available version of ITRS Log Analytics.

Configuration¶

The default configuration file is located at /etc/elasticsearch/properties.yml:

	# Radius opts
	#radius.host: "10.4.3.184"
	#radius.secret: "querty1q2ww2q1"
	#radius.port: 1812

Use appropriate secret based on config file in Radius server. The secret is configured on clients.conf in Radius server.

In this case, since the plugin will try to do Radius auth then client IP address should be the IP address where the Elasticsearch is deployed.

Every user by default at present get the admin role

Authentication with LDAP¶

To use OpenLDAP authorization, install or update ITRS Log Analytics 7.0.2.

Configuration¶

The default configuration file is located at /etc/elasticsearch/properties.yml:

	ldap_groups_search - Enable Open LDAP authorization. The ldap_groups_search switch with true / false values.

	search filter - you can define search_filter for each domain. When polling the LDAP / AD server, the placeholder is changed to userId (everything before @domain) of the user who is trying to login. Sample search_filter:

search_filter: "(&(objectClass=inetOrgPerson)(cn=%s))"

If no search_filter is given, the default will be used:

(&(&(objectCategory=Person)(objectClass=User))(samaccountname=%s))

	max_connections - for each domain (must be> = 1), this is the maximum number of connections that will be created with the LDAP / AD server for a given domain. Initially, one connection is created, if necessary another, up to the maximum number of connections set. If max_connections is not given, the default value = 10 will be used.

	ldap_groups_search - filter will be used to search groups on the AD / LDAP server of which the user is trying to login. An example of groups_search_filter that works quite universally is:

groups_search_filter: "(|(uniqueMember=%s)(member=%s))"

Sample configuration:

licenseFilePath: /usr/share/elasticsearch/

ldaps:

 - name: "dev.it.example.com"
 host: "192.168.0.1"
 port: 389 # optional, default 389
 #ssl_enabled: false # optional, default true
 #ssl_trust_all_certs: true # optional, default false
 bind_dn: "Administrator@dev2.it.example.com"
 bind_password: "Buspa#mexaj1"
 search_user_base_DN: "OU=lab,DC=dev,DC=it,DC=example,DC=pl"
 search_filter: "(&(objectClass=inetOrgperson)(cn=%s))" # optional, default "(&(&(objectCategory=Person)(objectClass=User))(samaccountname=%s))"
 user_id_attribute: "uid" # optional, default "uid"
 search_groups_base_DN: "OU=lab,DC=dev,DC=it,DC=example,DC=pl" # base DN, which will be used for searching user's groups in LDAP tree
 groups_search_filter: "(member=%s)" # optional, default (member=%s), if ldap_groups_search is set to true, this filter will be used for searching user's membership of LDAP groups
 ldap_groups_search: false # optional, default false - user groups will be determined basing on user's memberOf attribute
 unique_member_attribute: "uniqueMember" # optional, default "uniqueMember"
 max_connections: 10 # optional, default 10
 connection_timeout_in_sec: 10 # optional, default 1
 request_timeout_in_sec: 10 # optional, default 1
 cache_ttl_in_sec: 60 # optional, default 0 - cache disabled

When the password is longer than 20 characters, we recommend using our pass-encrypter, otherwise backslash must be escaped with another backslash. Endpoint role-mapping/_reload has been changed to _role-mapping/reload. This is a unification of API conventions, in accordance with Elasticsearch conventions.

Configuring Single Sign On (SSO)¶

In order to configure SSO, the system should be accessible by domain name URL, not IP address nor localhost.

Ok :https://loggui.com:5601/login. Wrong : https://localhost:5601/login, https://10.0.10.120:5601/login

In order to enable SSO on your system follow below steps. The configuration is made for AD: dev.example.com, GUI URL: loggui.com

Configuration steps¶

	Create an User Account for Elasticsearch auth plugin

In this step, a Kerberos Principal representing Elasticsearch auth plugin is created on the Active Directory. The principal name would be name@DEV.EXAMPLE.COM, while the DEV.EXAMPLE.COM is the administrative name of the realm. In our case, the principal name will be esauth@DEV.EXAMPLE.COM.

Create User in AD. Set “Password never expires” and “Other encryption options” as shown below:

	Define Service Principal Name (SPN) and Create a Keytab file for it

Use the following command to create the keytab file and SPN:

C:> ktpass -out c:\Users\Administrator\esauth.keytab -princ HTTP/loggui.com@DEV.EXAMPLE.COM -mapUser esauth -mapOp set -pass 'Sprint$123' -crypto ALL -pType KRB5_NT_PRINCIPAL

Values highlighted in bold should be adjusted for your system. The esauth.keytab file should be placed on your elasticsearch node - preferably /etc/elasticsearch/ with read permissions for elasticsearch user: chmod 640 /etc/elasticsearch/esauth.keytab chown elasticsearch: /etc/elasticsearch/esauth.keytab

	Create a file named krb5Login.conf:

com.sun.security.jgss.initiate{
 com.sun.security.auth.module.Krb5LoginModule required
 principal="esauth@DEV.EXAMPLE.COM" useKeyTab=true
 keyTab=/etc/elasticsearch/esauth.keytab storeKey=true debug=true;
 };
com.sun.security.jgss.krb5.accept {
 com.sun.security.auth.module.Krb5LoginModule required
 principal="esauth@DEV.EXAMPLE.COM" useKeyTab=true
 keyTab=/etc/elasticsearch/esauth.keytab storeKey=true debug=true;
 };

Principal user and keyTab location should be changed as per the values created in the step 2. Make sure the domain is in UPPERCASE as shown above.
The krb5Login.conf file should be placed on your elasticsearch node, for instance /etc/elasticsearch/ with read permissions for elasticsearch user:

Ssudo chmod 640 /etc/elasticsearch/krb5Login.conf
sudo chown elasticsearch: /etc/elasticsearch/krb5Login.conf

	Append the following JVM arguments (on Elasticsearch node in /etc/sysconfig/elasticsearch)

> -Dsun.security.krb5.debug=true -Djava.security.krb5.realm=**DEV.EXAMPLE.COM** -Djava.security.krb5.kdc=**AD_HOST_IP_ADDRESS** -Djava.security.auth.login.config=**/etc/elasticsearch/krb5Login.conf** -Djavax.security.auth.useSubjectCredsOnly=false

Change the appropriate values in the bold. This JVM arguments has to be set for Elasticsearch server.

	Add the following additional (sso.domain, service_principal_name, service_principal_name_password) settings for ldap in elasticsearch.yml or properties.yml file wherever the ldap settings are configured:

sso.domain: "dev.example.com"
ldaps:
- name: "dev.example.com"
 host: "IP_address"
 port: 389 # optional, default 389
 ssl_enabled: false # optional, default true
 ssl_trust_all_certs: false # optional, default false
 bind_dn: "Administrator@dev.example.com" # optional, skip for anonymous bind
 bind_password: "administrator_password" # optional, skip for anonymous bind
 search_user_base_DN: "OU=lab,DC=dev,DC=it,DC=example,DC=com"
 user_id_attribute: "uid" # optional, default "uid"
 search_groups_base_DN: "OU=lab,DC=dev,DC=it,DC=example,DC=com"
 unique_member_attribute: "uniqueMember" # optional, default "uniqueMember"
 service_principal_name: "esauth@DEV.EXAMPLE.COM"
 service_principal_name_password : "Sprint$123"

Note: At this moment, SSO works for only single domain. So you have to mention for what domain SSO should work in the above property sso.domain

	To apply the changes restart Elasticsearch service

sudo systemctl restart elasticsearch.service

	Enable SSO feature in kibana.yml file:

kibana.sso_enabled: true

	After that Kibana has to be restarted:

sudo systemctl restart kibana.service

Client (Browser) Configuration##¶

Internet Explorer configuration¶

	Goto Internet Options from Tools menu and click on Security Tab:

	Select Local intranet, click on Site -> Advanced -> Add the url:

After adding the site click close.

	Click on custom level and select the option as shown below:

Chrome configuration¶

For Chrome, the settings are taken from IE browser.

Firefox configuration¶

Update the following config:

Default home page¶

To set the default application for the GUI home page, please do the following:

	edit /etc/kibana/kibana.yml configuration file:

vi /etc/kibana/kibana.yml

	change the following directives:

Home Page settings
#kibana.defaultAppId: "home"

example:

Home Page settings
kibana.defaultAppId: "alerts"

Configure email delivery¶

Configure email delivery for sending PDF reports in Scheduler.¶

The default e-mail client that installs with the Linux CentOS system,
which is used by ITRS Log Analytics to send reports (Section 5.3 of the
Reports chapter), is postfix.# Configuration file for postfix mail client #

The postfix configuration directory for CentOS is /etc/postfix. It
contains files:

main.cf - the main configuration file for the program specifying
the basics parameters

Some of its directives:

Directive	**Description**
queue_directory	The postfix queue location.
command_directory	The location of Postfix commands.
daemon_directory	Location of Postfix daemons.
mail_owner	The owner of Postfix domain name of the server
myhostname	The fully qualified domain name of the server.
mydomain	Server domain
myorigin	Host or domain to be displayed as origin on email leaving the server.
inet_interfaces	Network interface to be used for incoming email.
mydestination	Domains from which the server accepts mail.
mynetworks	The IP address of trusted networks.
relayhost	Host or other mail server through which mail will be sent. This server will act as an outbound gateway.
alias_maps	Database of asliases used by the local delivery agent.
alias_database	Alias database generated by the new aliases command.
mail_spool_directory	The location where user boxes will be stored.

master.cf - defines the configuration settings for the master
daemon and the way it should work with other agents to deliver mail.
For each service installed in the master.cf file there are seven
columns that define how the service should be used.

Column	Description
service	The name of the service
type	The transport mechanism to be user.
private	Is the service only for user by Postfix.
unpriv	Can the service be run by ordinary users
chroot	Whether the service is to change the main directory (chroot) for the mail. Queue.
wakeup	Wake up interval for the service.
maxproc	The maximum number of processes on which the service can be forked (to divide in branches)
command + args	A command associated with the service plus any argument

access - can be used to control access based on e-mail address,
host address, domain or network address.

Examples of entries in the file

Description	Example
To allow access for specific IP address:	192.168.122.20 OK
To allow access for a specific domain:	example.com OK
To deny access from the 192.168.3.0/24 network:	192.168.3 REJECT

After making changes to the access file, you must convert its contents
to the access.db database with the postmap command:

 	# postmap /etc/postfix/access
 	# ll /etc/postfix/access*

 	-rw-r\--r\--. 1 root root 20876 Jan 26 2014 /etc/postfix/access
 	-rw-r\--r\--. 1 root root 12288 Feb 12 07:47 /etc/postfix/access.db

canonical - mapping incoming e-mails to local users.

Examples of entries in the file:

To forward emails to user1 to the
[[user1@yahoo.com] mailbox:

	user1 user1\@yahoo.com

To forward all emails for example.org to another example.com domain:

	@example.org @example.com

After making changes to the canonical file, you must convert its
contents to the canonical.db database with the postmap command:

postmap /etc/postfix/canonical
ll /etc/postfix/canonical*

-rw-r\--r\--. 1 root root 11681 2014-06-10 /etc/postfix/canonical
-rw-r\--r\--. 1 root root 12288 07-31 20:56 /etc/postfix/canonical.db

generic - mapping of outgoing e-mails to local users. The syntax
is the same as a canonical file. After you make change to this file,
you must also run the postmap command.

postmap /etc/postfix/generic
ll /etc/postfix/generic*

-rw-r\--r\--. 1 root root 9904 2014-06-10 /etc/postfix/generic
-rw-r\--r\--. 1 root root 12288 07-31 21:15 /etc/postfix/generic.db

reloceted – information about users who have been transferred.
The syntax of the file is the same as canonical and generic files.

Assuming tha user1 was moved from example.com to example.net, you can
forward all emails received on the old address to the new address:

Example of an entry in the file:

user1@example.com user1@example.net

After you make change to this file, you must also run the postmap
command.

postmap /etc/postfix/relocated
ll /etc/postfix/relocated*

-rw-r\--r\--. 1 root root 6816 2014-06-10 /etc/postfix/relocated
-rw-r\--r\--. 1 root root 12288 07-31 21:26 /etc/postfix/relocated.d

transport – mapping between e-mail addresses and server through
which these e-mails are to be sent (next hops) int the transport
format: nexthop.

Example of an entry in the file:

user1@example.com smtp:host1.example.com

After you make changes to this file, you must also run the postmap
command.

postmap /etc/postfix/transport
[root@server1 postfix]# ll /etc/postfix/transport*

-rw-r\--r\--. 1 root root 12549 2014-06-10 /etc/postfix/transport
-rw-r\--r\--. 1 root root 12288 07-31 21:32 /etc/postfix/transport.db

virtual - user to redirect e-mails intended for a certain user to
the account of another user or multiple users. It can also be used to
implement the domain alias mechanism.

Examples of the entry in the file:

Redirecting email for user1, to root users and user3:

user1 root, user3

Redirecting email for user 1 in the example.com domain to the root
user:

user1@example.com root

After you make change to this file, you must also run the postmap
command:

postmap /etc/postfix/virtual
ll /etc/postfix/virtual

-rw-r\--r\--. 1 root root 12494 2014-06-10 /etc/postfix/virtual
-rw-r\--r\--. 1 root root 12288 07-31 21:58 /etc/postfix/virtual.db

Basic postfix configuration¶

Base configuration of postfix application you can make in
/etc/postfix/main.cfg configuration file, which must complete
with the following entry:

	section # RECEIVING MAIL

 inet_interfaces = all
 inet_protocols = ipv4

	section # INTERNET OR INTRANET

 relayhost = [IP mail server]:25 (port number)

I the netxt step you must complete the canonical file
of postfix

At the end you should restart the postfix:

systemctl restart postfix

Example of postfix configuration with SSL encryption enabled¶

To configure email delivery with SSL encryption you need to make
the following changes in the postfix configuration files:

	/etc/postfix/main.cf - file should contain the following
entries in addition to standard (unchecked entries):

 mydestination = $myhostname, localhost.$mydomain, localhost
 myhostname = example.com
 relayhost = [smtp.example.com]:587
 smtp_sasl_auth_enable = yes
 smtp_sasl_password_maps = hash:/etc/postfix/sasl_passwd
 smtp_sasl_security_options = noanonymous
 smtp_tls_CAfile = /root/certs/cacert.cer
 smtp_use_tls = yes
 smtp_sasl_mechanism_filter = plain, login
 smtp_sasl_tls_security_options = noanonymous
 canonical_maps = hash:/etc/postfix/canonical
 smtp_generic_maps = hash:/etc/postfix/generic
 smtpd_recipient_restrictions = permit_sasl_authenticated

	/etc/postfix/sasl/passwd - file should define the data for authorized

 	[smtp.example.com\]:587 [[USER@example.com:PASS]](mailto:USER@example.com:PASS)

You need to give appropriate permissions:

	chmod 400 /etc/postfix/sasl_passwd

and map configuration to database:

	postmap /etc/postfix/sasl_passwd

next you need to generate a ca cert file:

	cat /etc/ssl/certs/Example_Server_CA.pem | tee -a etc/postfix/cacert.pem

And finally, you need to restart postfix

	/etc/init.d/postfix restart

Custom notification on workstation¶

The mechanism of personalization of notification at the workstation will be implemented by combining alerting mechanisms, triggering integrated commands and triggering interaction scripts allowing for the transfer of a personalized notification to the workstation.
The notifications will use the specific script, which has the ability to inform all logged in users or the selected one about the detection of individual incidents.

Configuration steps

	Create a new alert rule or edit an existing one according to the instruction: Creating Alerts,

	In Alert Method field select the Command method,

	Add the following scritp name to Path to script/command filed:

notifyworkstation.py

Agents module¶

Before use ensure that you have all required files

	Script for creating necessary certificates: ./agents/masteragent/certificates/generate_certs.sh;

	Logstash utilites:

 ./integrations/masteragent/conf.d/masteragent {01-input-agents.conf, 050-filter-agents.conf, 100-output-agents.conf}
 ./integrations/masteragent/masteragent.yml.off.

	Linux Agent files: ./agents/masteragent/agents/linux/masteragent:

Executable: MasterBeatAgent.jar
Configuration File for MasterAgent (server): MasterBeatAgent.conf
Configuration File for Agent (client): agent.conf
Service file: masteragent.service

Preparations¶

EVERY COMMAND HAVE TO BE EXECUTED FROM /INSTALL DIRECTORY.

	Generate the certificates using generate_certs.sh script from ./agents/masteragent/certificates directory.

	Fill DOMAIN, DOMAIN_IP, COUNTRYNAME, STATE, COMPANY directives at the beggining of the script. Note that DOMAIN_IP represents IP of host running logstash.
	Generate certs:

bash ./agents/masteragent/certificates/generate_certs.sh

	Set KeyStore password of your choice that is utilised to securely store certificates.
	Type ‘yes’ when “Trust this certificate?” monit will be shown.
	Set TrusStore password of your choice that is used to secure CAs. Remember entered passwords - they’ll be used later!

	Configure firewall to enable communication on used ports (defaults: TCP 8080 -> logstash, TCP 8081 -> agent’s server).

	These ports can be changed, but must reflect “port” and “logstash” directives from agent.conf file to ensure connection with agent.
	Commands for default ports:

firewall-cmd --permanent --zone public --add-port 8080/tcp
firewall-cmd --permanent --zone public --add-port 8081/tcp

	Configure Logstash:

	Copy files:

cp -rf ./integrations/masteragent/conf.d/* /etc/logstash/conf.d/

	Copy pipeline configuration:

cp -rf ./integrations/masteragent/*.yml.off /etc/logstash/pipelines.d/masteragent.yml
cat ./integrations/masteragent/masteragent.yml.off >> /etc/logstash/pipelines.yml`

	Configure SSL connection, by copying previously generated certificates:

mkdir -p /etc/logstash/conf.d/masteragent/ssl
/bin/cp -rf ./agents/masteragent/certificates/localhost.* ./agents/masteragent/certificates/rootCA.crt /etc/logstash/conf.d/masteragent/ssl/

	Set permissions:

chown -R logstash:logstash /etc/logstash/conf.d/masteragent

	Restart service:

systemctl restart logstash

Installation of MasterAgent - Server Side¶

	Copy executable and config:

mkdir -p /opt/agents
/bin/cp -rf ./agents/masteragent/agents/linux/masteragent/MasterBeatAgent.jar /opt/agents
/bin/cp -rf ./agents/masteragent/agents/linux/masteragent/MasterBeatAgent.conf /opt/agents/agent.conf

	Copy certificates:

/bin/cp -rf ./agents/masteragent/certificates/node_name.p12 ./agents/masteragent/certificates/root.jks /opt/agents/

	Set permissions:

chown -R kibana:kibana /opt/agents

	Update configuration file with KeyStore/TrustStore paths and passwords. Use your preferred editor eg. vim:

vim /opt/agents/agent.conf

Installation of Agent - Client Side¶

FOR WINDOWS AND LINUX: `Client requires at least Java 1.8+.

Linux Agent - software installed on clients running on Linux OS:

	Install net-tools package to use Agent on Linux RH / Centos:

yum install net-tools

	Copy executable and config:

mkdir -p /opt/masteragent
/bin/cp -rf ./agents/masteragent/agents/linux/masteragent/agent.conf ./agents/masteragent/agents/linux/masteragent/MasterBeatAgent.jar /opt/masteragent
/bin/cp -rf ./agents/masteragent/agents/linux/masteragent/masteragent.service /usr/lib/systemd/system/masteragent.service

	Copy certificates:

/bin/cp -rf ./certificates/node_name.p12 ./certificates/root.jks /opt/masteragent/

	Update configuration file with KeyStore/TrustStore paths and passwords. Also update IP and port (by default 8080 is used) of the logstash host that agent will connect to with ‘logstash’ directive. Use your preferred editor eg. vim:

vim /opt/masteragent/agent.conf

	Enable masteragent service:

systemctl daemon-reload
systemctl enable masteragent
systemctl start masteragent

	Finally verify in Kibana ‘Agents’ plugin if newly added agent is present. Check masteragent logs executing:

journalctl -fu masteragent

Windows Agent - software installed on clients running on Windows OS:¶

FOR WINDOWS AND LINUX: `Client requires at least Java 1.8+.

	Ensure that you have all required files (./install/agents/masteragent/agents/windows/masteragent):

	Installer and manifest: agents.exe, agents.xml
	Client: Agents.jar
	Configuration File: agent.conf

	Configure firewall:

Add an exception to the firewall to listen on TCP port 8081.
Add an exception to the firewall to allow outgoing connection to TCP port masteragent:8080 (reasonable only with configured “http_enabled = true”)

	Create C:\Program Files\MasterAgent directory.
	Copy the contents of the ./install/agents/masteragent/agents/windows/masteragent directory to the C:\Program Files\MasterAgent.
	Copy node_name.p12 and root.jks files from the ./install/agents/masteragent/certificates to desired directory.
	Update “C:\Program Files\MasterAgent\agent.conf” file with KeyStore/TrustStore paths from previous step and passwords. Also update IP and port (by default 8080 is used) of the logstash host that agent will connect to with ‘logstash’ directive.
	Start PowerShell as an administrator:

To install agent you can use interchangeably the following methods:

	Method 1 - use installer:

cd "C:\Program Files\MasterAgent"
.\agents.exe install
.\agents.exe start

	Method 2 - manually creating service:

New-Service -name masteragent -displayName masteragent -binaryPathName "C:\Program Files\MasterAgent\agents.exe"

	Finally verify in Kibana ‘Agents’ plugin if newly added agent is present. To check out logs and errors, look for ‘agents.out.log’ and ‘agents.err.log’ files in C:\Program Files\MasterAgent directory after service start. Also check the service status:

.\agents.exe status

Beats - configuration templates¶

	Go to the Agents that is located in main manu. Then go to Templates and click Add template button.

	Click Create new file button at the bottom.

	you will see form to create file that will be on client system.
There are inputs such as:

	Destination Path,
	File name,
	Description,
	Upload file,
	Content.

	Remember that you must provide the exact path to your directory in Destination Path field

	After that add your file to template by checking it from Available files list and clicking Add and then Create new file.

	You can now see your template in the Template tab

	The next step will be to add the template to the agent by checking the agent’s form list and clicking Apply Template.

	Last step is apply template by checking it from list and clicking Apply button.

You can also select multiple agents. Remember, if your file path is Windows type You can only select Windows agents.
You can check the Logs by clicking the icon in the logs column.

Windows Agent installation¶

	Add an exception to the firewall to listen on TCP port 8081.

	Add an exception to the firewall enabling connection on TCP LOGSTASH_IP:8080 port.

	Copy content of the ./agents/windows from installation directory to “C:\Program Files\MasterAgnet”

	Change IP address of the Kibana GUI server and Logstash server in “C:\Program Files\MasterAgnet\agent.conf” file.

	In order to install the service, start the console as an administrator and execute the following commands:

cd "C:\Program Files\MasterAgent"
agents.exe install
agents.exe start

	An alternative method of installing the service, run the PowerShell console as administrator and execute the following commands:

New-Service -name masteragent -displayName masteragent - binaryPathName "C:\Program Files\MasterAgent\agents.exe"

	Check status of service via services.msc (if stoped, try start it agian).

	In the GUI, in the Agents tab, you can check the status of the newly connected host.

Agent module compatibility¶

The Agents module works with Beats agents in the following versions:

 	Nr	Agent Name	Beats Version	Link to download
	1

	Filebeat

	OSS 6.8.14

	https://www.elastic.co/downloads/past-releases/filebeat-oss-6-8-13

	2

	Packetbeat

	OSS 6.8.14

	https://www.elastic.co/downloads/past-releases/packetbeat-oss-6-8-13

	3

	Winlogbeat

	OSS 6.8.14

	https://www.elastic.co/downloads/past-releases/winlogbeat-oss-6-8-13

	4

	Metricbeat

	OSS 6.8.14

	https://www.elastic.co/downloads/past-releases/metricbeat-oss-6-8-13

	5

	Heartbeat

	OSS 6.8.14

	https://www.elastic.co/downloads/past-releases/heartbeat-oss-6-8-13

	6

	Auditbeat

	OSS 6.8.14

	https://www.elastic.co/downloads/past-releases/auditbeat-oss-6-8-13

	7

	Logstash

	OSS 6.8.14

	https://www.elastic.co/downloads/past-releases/logstash-oss-6-8-13

Beats agents installation¶

Windows¶

Winlogbeat¶

Installation¶

	Copy the Winlogbeat installer from the installation directory install/Agents/beats/windows/winlogbeat-oss-6.8.14-windows-x86_64.zip and unpack
	Copy the installation files to the C:\Program Files\Winlogbeat directory

Configuration¶

Editing the file: C:\Program Files\Winlogbeat\winlogbeat.yml:

	In section:

winlogbeat.event_logs:
 - name: Application
 ignore_older: 72h
 - name: Security
 - name: System

change to:

winlogbeat.event_logs:
 - name: Application
 ignore_older: 72h
 - name: Security
 ignore_older: 72h
 - name: System
 ignore_older: 72h

	In section:

setup.template.settings:
 index.number_of_shards: 1

change to:

#setup.template.settings:
 #index.number_of_shards: 1

	In section:

setup.kibana:

change to:

#setup.kibana:

	In section:

output.elasticsearch:
 # Array of hosts to connect to.
 hosts: ["localhost:9200"]

change to:

#output.elasticsearch:
 # Array of hosts to connect to.
 #hosts: ["localhost:9200"]

	In section:

#output.logstash:
 # The Logstash hosts
 #hosts: ["localhost:5044"]

change to:

output.logstash:
 # The Logstash hosts
 hosts: ["LOGSTASH_IP:5044"]

	In section:

#tags: ["service-X", "web-tier"]

change to:

tags: ["winlogbeat"]

Run the PowerShell console as Administrator and execute the following commands:

cd 'C:\Program Files\Winlogbeat'
.\install-service-winlogbeat.ps1

Security warning
Run only scripts that you trust. While scripts from the internet can be useful,
this script can potentially harm your computer. If you trust this script, use
the Unblock-File cmdlet to allow the script to run without this warning message.
Do you want to run C:\Program Files\Winlogbeat\install-service-winlogbeat.ps1?
[D] Do not run [R] Run once [S] Suspend [?] Help (default is "D"): R

Output:

Status Name DisplayName
------ ---- -----------
Stopped Winlogbeat Winlogbeat

Start Winlogbeat service:

sc start Winlogbeat

Test configuration:

cd 'C:\Program Files\Winlogbeat'
winlogbeat.exe test config
winlogbeat.exe test output

Drop event¶

We can also drop events on the agent side. To do this we need to use the drop_event processor

processors:
 - drop_event:
 when:
 condition

Each condition receives a field to compare. You can specify multiple fields under the same condition by using AND between the fields (for example, field1 AND field2).

For each field, you can specify a simple field name or a nested map, for example dns.question.name.

See Exported fields for a list of all the fields that are exported by Winlogbeat.

The supported conditions are:

	equals
	contains
	regexp
	range
	network
	has_fields
	or
	and
	not

equals.
With the equals condition, you can compare if a field has a certain value. The condition accepts only an integer or a string value.

For example, the following condition checks if the response code of the HTTP transaction is 200:

equals:
 http.response.code: 200

contains.
The contains condition checks if a value is part of a field. The field can be a string or an array of strings. The condition accepts only a string value.

For example, the following condition checks if an error is part of the transaction status:

contains:
 status: "Specific error"

regexp.
The regexp condition checks the field against a regular expression. The condition accepts only strings.

For example, the following condition checks if the process name starts with foo:

regexp:
 system.process.name: "^foo.*"

range.
The range condition checks if the field is in a certain range of values. The condition supports lt, lte, gt and gte. The condition accepts only integer or float values.

For example, the following condition checks for failed HTTP transactions by comparing the http.response.code field with 400.

range:
 http.response.code:
 gte: 400

This can also be written as:

range:
 http.response.code.gte: 400

The following condition checks if the CPU usage in percentage has a value between 0.5 and 0.8.

range:
 system.cpu.user.pct.gte: 0.5
 system.cpu.user.pct.lt: 0.8

network.
The network condition checks if the field is in a certain IP network range. Both IPv4 and IPv6 addresses are supported. The network range may be specified using CIDR notation, like “192.0.2.0/24” or “2001:db8::/32”, or by using one of these named ranges:

	loopback - Matches loopback addresses in the range of 127.0.0.0/8 or ::1/128.
	unicast - Matches global unicast addresses defined in RFC 1122, RFC 4632, and RFC 4291 with the exception of the IPv4 broadcast address (255.255.255.255). This includes private address ranges.
	multicast - Matches multicast addresses.
	interface_local_multicast - Matches IPv6 interface-local multicast addresses.
	link_local_unicast - Matches link-local unicast addresses.
	link_local_multicast - Matches link-local multicast addresses.
	private - Matches private address ranges defined in RFC 1918 (IPv4) and RFC 4193 (IPv6).
	public - Matches addresses that are not loopback, unspecified, IPv4 broadcast, link local unicast, link local multicast, interface local multicast, or private.
	unspecified - Matches unspecified addresses (either the IPv4 address “0.0.0.0” or the IPv6 address “::”).

The following condition returns true if the source.ip value is within the private address space.

network:
 source.ip: private

This condition returns true if the destination.ip value is within the IPv4 range of 192.168.1.0 - 192.168.1.255.

network:
 destination.ip: '192.168.1.0/24'

And this condition returns true when destination.ip is within any of the given subnets.

network:
 destination.ip: ['192.168.1.0/24', '10.0.0.0/8', loopback]

has_fields.
The has_fields condition checks if all the given fields exist in the event. The condition accepts a list of string values denoting the field names.

For example, the following condition checks if the http.response.code field is present in the event.

has_fields: ['http.response.code']

or.
The or operator receives a list of conditions.

or:
 - <condition1>
 - <condition2>
 - <condition3>
 ...

For example, to configure the condition http.response.code = 304 OR http.response.code = 404:

or:
 - equals:
 http.response.code: 304
 - equals:
 http.response.code: 404

and.
The and operator receives a list of conditions.

and:
 - <condition1>
 - <condition2>
 - <condition3>
 ...

For example, to configure the condition http.response.code = 200 AND status = OK:

or:
 - <condition1>
 - and:
 - <condition2>
 - <condition3>

not.
The not operator receives the condition to negate.

not:
 <condition>

For example, to configure the condition NOT status = OK:

not:
 equals:
 status: OK

Internal queue¶

Winlogbeat uses an internal queue to store events before publishing them. The queue is responsible for buffering and combining events into batches that can be consumed by the outputs. The outputs will use bulk operations to send a batch of events in one transaction.

You can configure the type and behavior of the internal queue by setting options in the queue section of the winlogbeat.yml config file. Only one queue type can be configured.

This sample configuration sets the memory queue to buffer up to 4096 events:

queue.mem:
 events: 4096

Configure the memory queue
The memory queue keeps all events in memory.

If no flush interval and no number of events to flush is configured, all events published to this queue will be directly consumed by the outputs. To enforce spooling in the queue, set the flush.min_events and flush.timeout options.

By default flush.min_events is set to 2048 and flush.timeout is set to 1s.

The output’s bulk_max_size setting limits the number of events being processed at once.

The memory queue waits for the output to acknowledge or drop events. If the queue is full, no new events can be inserted into the memory queue. Only after the signal from the output will the queue free up space for more events to be accepted.

This sample configuration forwards events to the output if 512 events are available or the oldest available event has been waiting for 5s in the queue:

queue.mem:
 events: 4096
 flush.min_events: 512
 flush.timeout: 5s

Configuration options

You can specify the following options in the queue.mem section of the winlogbeat.yml config file:
events
Number of events the queue can store.
The default value is 4096 events.

flush.min_events
Minimum number of events required for publishing. If this value is set to 0, the output can start publishing events without additional waiting times. Otherwise the output has to wait for more events to become available.

The default value is 2048.

flush.timeout
Maximum wait time for flush.min_events to be fulfilled. If set to 0s, events will be immediately available for consumption.
The default value is 1s.

Configure disk queue
The disk queue stores pending events on the disk rather than main memory. This allows Beats to queue a larger number of events than is possible with the memory queue, and to save events when a Beat or device is restarted. This increased reliability comes with a performance tradeoff, as every incoming event must be written and read from the device’s disk. However, for setups where the disk is not the main bottleneck, the disk queue gives a simple and relatively low-overhead way to add a layer of robustness to incoming event data.

The disk queue is expected to replace the file spool in a future release.

To enable the disk queue with default settings, specify a maximum size:

queue.disk:
 max_size: 10GB

The queue will use up to the specified maximum size on disk. It will only use as much space as required. For example, if the queue is only storing 1GB of events, then it will only occupy 1GB on disk no matter how high the maximum is. Queue data is deleted from disk after it has been successfully sent to the output.

Configuration options

You can specify the following options in the queue.disk section of the winlogbeat.yml config file:

path
The path to the directory where the disk queue should store its data files. The directory is created on startup if it doesn’t exist.

The default value is "${path.data}/diskqueue".

max_size (required)
The maximum size the queue should use on disk. Events that exceed this maximum will either pause their input or be discarded, depending on the input’s configuration.

A value of 0 means that no maximum size is enforced, and the queue can grow up to the amount of free space on the disk. This value should be used with caution, as completely filling a system’s main disk can make it inoperable. It is best to use this setting only with a dedicated data or backup partition that will not interfere with Winlogbeat or the rest of the host system.

The default value is 10GB.

segment_size
Data added to the queue is stored in segment files. Each segment contains some number of events waiting to be sent to the outputs, and is deleted when all its events are sent. By default, segment size is limited to 1/10 of the maximum queue size. Using a smaller size means that the queue will use more data files, but they will be deleted more quickly after use. Using a larger size means some data will take longer to delete, but the queue will use fewer auxiliary files. It is usually fine to leave this value unchanged.

The default value is max_size / 10.

read_ahead
The number of events that should be read from disk into memory while waiting for an output to request them. If you find outputs are slowing down because they can’t read as many events at a time, adjusting this setting upward may help, at the cost of higher memory usage.

The default value is 512.

write_ahead
The number of events the queue should accept and store in memory while waiting for them to be written to disk. If you find the queue’s memory use is too high because events are waiting too long to be written to disk, adjusting this setting downward may help, at the cost of reduced event throughput. On the other hand, if inputs are waiting or discarding events because they are being produced faster than the disk can handle, adjusting this setting upward may help, at the cost of higher memory usage.

The default value is 2048.

retry_interval
Some disk errors may block operation of the queue, for example a permission error writing to the data directory, or a disk full error while writing an event. In this case, the queue reports the error and retries after pausing for the time specified in retry_interval.

The default value is 1s (one second).

max_retry_interval
When there are multiple consecutive errors writing to the disk, the queue increases the retry interval by factors of 2 up to a maximum of max_retry_interval. Increase this value if you are concerned about logging too many errors or overloading the host system if the target disk becomes unavailable for an extended time.

The default value is 30s (thirty seconds).

Filebeat¶

Installation¶

	Copy the Filebeat installer from the installation directory install/Agents/beats/windows/filebeat-oss-6.8.14-windows-x86_64.zip and unpack
	Copy the installation files to the C:\Program Files\Filebeat directory

Configuration¶

Editing the file: C:\Program Files\Filebeat\filebeat.yml:

	In section:

- type: log

 # Change to true to enable this input configuration.
 enabled: false

change to:

- type: log

 # Change to true to enable this input configuration.
 enabled: true

	In section:

 paths:
 - /var/log/*.log
 #- c:\programdata\elasticsearch\logs*

change to:

paths:
 #- /var/log/*.log
 #- c:\programdata\elasticsearch\logs*
 - "C:\Program Files\Microsoft SQL Server*\MSSQL\Log*"
 - "C:\inetpub\logs*""

	In section:

setup.template.settings:
 index.number_of_shards: 1

change to:

#setup.template.settings:
 #index.number_of_shards: 1

	In section:

setup.kibana:

change to:

#setup.kibana:

	In section:

output.elasticsearch:
 # Array of hosts to connect to.
 hosts: ["localhost:9200"]

change to:

#output.elasticsearch:
 # Array of hosts to connect to.
 #hosts: ["localhost:9200"]

	In section:

#output.logstash:
 # The Logstash hosts
 #hosts: ["localhost:5044"]

change to:

output.logstash:
 # The Logstash hosts
 hosts: ["LOGSTASH_IP:5044"]

	In section:

#tags: ["service-X", "web-tier"]

change to:

tags: ["filebeat"]

Run the PowerShell console as Administrator and execute the following commands:

cd 'C:\Program Files\Filebeat'
.\install-service-filebeat.ps1

Security warning
Run only scripts that you trust. While scripts from the internet can be useful,
this script can potentially harm your computer. If you trust this script, use
the Unblock-File cmdlet to allow the script to run without this warning message.
Do you want to run C:\Program Files\Filebeat\install-service-filebeat.ps1?
[D] Do not run [R] Run once [S] Suspend [?] Help (default is "D"): R

Output:

Status Name DisplayName
------ ---- -----------
Stopped Filebeat Filebeat

Start Filebeat service:

sc start filebeat

You can enable, disable and list Filebeat modules using the following command:

cd 'C:\Program Files\Filebeat'
filebeat.exe modules list
filebeat.exe modules apache enable
filebeat.exe modules apache disable

Test configuration:

cd 'C:\Program Files\Filebeat'
filebeat.exe test config
filebeat.exe test output

Merticbeat¶

Installation¶

	Copy the Merticbeat installer from the installation directory install/Agents/beats/windows/merticbeat-oss-6.8.14-windows-x86_64.zip and unpack
	Copy the installation files to the C:\Program Files\Merticbeat directory

Configuration¶

Editing the file: C:\Program Files\Merticbeat\metricbeat.yml:

	In section:

setup.template.settings:
 index.number_of_shards: 1
 index.codec: best_compression

change to:

#setup.template.settings:
 #index.number_of_shards: 1
 #index.codec: best_compression

	In section:

setup.kibana:

change to:

#setup.kibana:

	In section:

output.elasticsearch:
 # Array of hosts to connect to.
 hosts: ["localhost:9200"]

change to:

#output.elasticsearch:
 # Array of hosts to connect to.
 #hosts: ["localhost:9200"]

	In section:

#output.logstash:
 # The Logstash hosts
 #hosts: ["localhost:5044"]

change to:

output.logstash:
 # The Logstash hosts
 hosts: ["LOGSTASH_IP:5044"]

	In section:

#tags: ["service-X", "web-tier"]

change to:

tags: ["metricbeat"]

Run the PowerShell console as Administrator and execute the following commands:

cd 'C:\Program Files\Metricbeat'
.\install-service-metricbeat.ps1

Security warning
Run only scripts that you trust. While scripts from the internet can be useful,
this script can potentially harm your computer. If you trust this script, use
the Unblock-File cmdlet to allow the script to run without this warning message.
Do you want to run C:\Program Files\Metricbeat\install-service-metricbeat.ps1?
[D] Do not run [R] Run once [S] Suspend [?] Help (default is "D"): R

Output:

Status Name DisplayName
------ ---- -----------
Stopped Metricbeat Metricbeat

Start Filebeat service:

sc start metricbeat

You can enable, disable and list Metricbeat modules using the following command:

cd 'C:\Program Files\Metricbeat'
metricbeat.exe modules list
metricbeat.exe modules apache enable
metricbeat.exe modules apache disable

Test configuration:

cd 'C:\Program Files\Metricbeat'
metricbeat.exe test config
metricbeat.exe test output

Packetbeat¶

Installation¶

	Copy the Packetbeatinstaller from the installation directory install/Agents/beats/windows/packetbeat-oss-6.8.14-windows-x86_64.zip and unpack
	Copy the installation files to the C:\Program Files\Packetbeat directory

Configuration¶

Editing the file: C:\Program Files\Packetbeat\packetbeat.yml:

	In section:

setup.template.settings:
 index.number_of_shards: 3

change to:

#setup.template.settings:
 #index.number_of_shards: 3

	In section:

setup.kibana:

change to:

#setup.kibana:

	In section:

output.elasticsearch:
 # Array of hosts to connect to.
 hosts: ["localhost:9200"]

change to:

#output.elasticsearch:
 # Array of hosts to connect to.
 #hosts: ["localhost:9200"]

	In section:

#output.logstash:
 # The Logstash hosts
 #hosts: ["localhost:5044"]

change to:

output.logstash:
 # The Logstash hosts
 hosts: ["LOGSTASH_IP:5044"]

	In section:

#tags: ["service-X", "web-tier"]

change to:

tags: ["packetbeat"]

Run the PowerShell console as Administrator and execute the following commands:

cd 'C:\Program Files\\Packetbeat'
.\install-service-packetbeat.ps1

Security warning
Run only scripts that you trust. While scripts from the internet can be useful,
this script can potentially harm your computer. If you trust this script, use
the Unblock-File cmdlet to allow the script to run without this warning message.
Do you want to run C:\Program Files\Packetbeat\install-service-packetbeat.ps1?
[D] Do not run [R] Run once [S] Suspend [?] Help (default is "D"): R

Output:

Status Name DisplayName
------ ---- -----------
Stopped Packetbeat Packetbeat

Start Packetbeat service:

sc start packetbeat

Test configuration:

cd 'C:\Program Files\Packetbeat'
packetbeat.exe test config
packetbeat.exe test output

Linux¶

Filebeat¶

Installation¶

	Copy the Filebeat installer from the installation directory install/Agents/beats/linux/filebeat-oss-6.8.14-x86_64.rpm

	Install filebeat with following commadn:

yum install -y filebeat-oss-6.8.14-x86_64.rpm

Configuration¶

Editing the file: /etc/filebeat/filebeat.yml:

	In section:

- type: log

 # Change to true to enable this input configuration.
 enabled: false

change to:

- type: log

 # Change to true to enable this input configuration.
 enabled: true

	In section:

setup.template.settings:
 index.number_of_shards: 1

change to:

#setup.template.settings:
 #index.number_of_shards: 1

	In section:

setup.kibana:

change to:

#setup.kibana:

	In section:

output.elasticsearch:
 # Array of hosts to connect to.
 hosts: ["localhost:9200"]

change to:

#output.elasticsearch:
 # Array of hosts to connect to.
 #hosts: ["localhost:9200"]

	In section:

#output.logstash:
 # The Logstash hosts
 #hosts: ["localhost:5044"]

change to:

output.logstash:
 # The Logstash hosts
 hosts: ["LOGSTASH_IP:5044"]

	In section:

#tags: ["service-X", "web-tier"]

change to:

tags: ["filebeat"]

Start Filebeat service:

systemctl start filebeat

You can enable, disable and list Filebeat modules using the following command:

filebeat modules list
filebeat modules apache enable
filebeat modules apache disable

Test configuration:

filebeat test config
filebeat test output

Merticbeat¶

Installation¶

	Copy the Merticbeatinstaller from the installation directory install/Agents/beats/linux/metricbeat-oss-6.8.14-x86_64.rpm

	Install Merticbeat with following command:

yum install -y metricbeat-oss-6.8.14-x86_64.rpm

Configuration¶

Editing the file: /etc/metricbeat/metricbeat.yml:

	In section:

setup.template.settings:
 index.number_of_shards: 1
 index.codec: best_compression

change to:

#setup.template.settings:
 #index.number_of_shards: 1
 #index.codec: best_compression

	In section:

setup.kibana:

change to:

#setup.kibana:

	In section:

output.elasticsearch:
 # Array of hosts to connect to.
 hosts: ["localhost:9200"]

change to:

#output.elasticsearch:
 # Array of hosts to connect to.
 #hosts: ["localhost:9200"]

	In section:

#output.logstash:
 # The Logstash hosts
 #hosts: ["localhost:5044"]

change to:

output.logstash:
 # The Logstash hosts
 hosts: ["LOGSTASH_IP:5044"]

	In section:

#tags: ["service-X", "web-tier"]

change to:

tags: ["metricbeat"]

Start Filebeat service:

systemctl start metricbeat

You can enable, disable and list Metricbeat modules using the following command:

metricbeat modules list
metricbeat modules apache enable
metricbeat modules apache disable

Test configuration:

metricbeat test config
metricbeat test output

Packetbeat¶

Installation¶

	Copy the Packetbeat installer from the installation directory install/Agents/beats/linux/packetbeat-oss-6.8.14-x86_64.rpm

	Install Packetbeatwith following command:

yum install -y packetbeat-oss-6.8.14-x86_64.rpm

Configuration¶

Editing the file: /etc/packetbeat/packetbeat.yml:

	In section:

setup.template.settings:
 index.number_of_shards: 3

change to:

#setup.template.settings:
 #index.number_of_shards: 3

	In section:

setup.kibana:

change to:

#setup.kibana:

	In section:

output.elasticsearch:
 # Array of hosts to connect to.
 hosts: ["localhost:9200"]

change to:

#output.elasticsearch:
 # Array of hosts to connect to.
 #hosts: ["localhost:9200"]

	In section:

#output.logstash:
 # The Logstash hosts
 #hosts: ["localhost:5044"]

change to:

output.logstash:
 # The Logstash hosts
 hosts: ["LOGSTASH_IP:5044"]

	In section:

#tags: ["service-X", "web-tier"]

change to:

tags: ["packetbeat"]

Start Packetbeat service:

servicectl start packetbeat

Test configuration:

packetbeat test config
packetbeat test output

Kafka¶

Kafka allows you to distribute the load between nodes receiving data and encrypts communication.

Architecture example:

The Kafka installation¶

To install the Kafka, follow the steps below:

	Java installation

yum install java-11-openjdk-headless.x86_64

	Create users for Kafka

useradd kafka -m -d /opt/kafka -s /sbin/nologin

	Download the installation package::

https://www.apache.org/dyn/closer.cgi?path=/kafka/3.2.0/kafka_2.13-3.2.0.tgz

	Unpack installation files to /opt/kafka directory:

tar -xzvf kafka_2.13-3.2.0.tgz -C /opt/
mv /opt/kafka_2.13-3.2.0 /opt/kafka

	Set the necessary permissions

chown -R kafka:kafka /opt/kafka

	Edit configs and set the data and log directory:

vim /opt/kafka/config/server.properties

log.dirs=/tmp/kafka-logs

	Set the necessary firewall rules:

firewall-cmd --permanent --add-port=2181/tcp
firewall-cmd --permanent --add-port=2888/tcp
firewall-cmd --permanent --add-port=3888/tcp
firewall-cmd --permanent --add-port=9092/tcp
firewall-cmd --reload

	Create service files:

vim /usr/lib/systemd/system/zookeeper.service

[Unit]
Requires=network.target remote-fs.target
After=network.target remote-fs.target

[Service]
Type=simple
User=kafka
ExecStart=/opt/kafka/bin/zookeeper-server-start.sh /opt/kafka/config/zookeeper.properties
ExecStop=/opt/kafka/bin/zookeeper-server-stop.sh
Restart=on-abnormal

[Install]
WantedBy=multi-user.target

vim create /usr/lib/systemd/system/kafka.service

[Unit]
Requires=zookeeper.service
After=zookeeper.service

[Service]
Type=simple
User=kafka
ExecStart=/bin/sh -c '/opt/kafka/bin/kafka-server-start.sh /opt/kafka/config/server.properties > /opt/kafka/kafka.log 2>&1'
ExecStop=/opt/kafka/bin/kafka-server-stop.sh
Restart=on-abnormal

[Install]
WantedBy=multi-user.target

	Reload systemctl daemon and the Kafka services:

systemctl daemon-reload
systemctl enable zookeeper kafka
systemctl start zookeeper kafka

	To test add the Kafka topic:

/opt/kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 --create --partitions 1 --replication-factor 1 --topic test

	List existing topics:

/opt/kafka/bin/kafka-topics.sh --bootstrap-server localhost:9092 --list

	Generate test messages

/opt/kafka/bin/kafka-console-producer.sh --topic test --bootstrap-server localhost:9092
 message 1
 message 2
 ...

	Read test messages

/opt/kafka/bin/kafka-console-consumer.sh --topic test --from-beginning --bootstrap-server localhost:9092

Kafka encryption¶

	Generate server keystore with certificate pair.

Complete:

	Certificate validity period;
	The name of the alias;
	The FQDN of the server;
	Server IP;

keytool -keystore server.keystore.jks -alias {alias_name} -validity {validity} -genkey -keyalg RSA -ext SAN=DNS:{FQDN},IP:{server_IP}

	Creating your own CA

openssl req -new -x509 -keyout rootCA.key -out rootCA.crt -days 365

	Import CA to server keystore and client keystore:

keytool -keystore server.truststore.jks -alias CARoot -import -file rootCA.crt
keytool -keystore client.truststore.jks -alias CARoot -import -file rootCA.crt

	Create a certificate signing request:

Complete:

	The name of the alias;
	The FQDN of the server;
	Server IP;

keytool -keystore server.keystore.jks -alias {alias_name} -certreq -file cert-file -ext SAN=DNS:{FQDN},IP:{server_IP}

	Sing in certificate

Complete:

	The name of the alias;
	The FQDN of the server;
	Server IP;
	Password

openssl x509 -req -extfile <(printf"subjectAltName = DNS:{FQDN},IP:{server_IP}") -CA rootCA.crt -CAkey rootCA.key -in cert-file -out cert-signed -days 3650 -CAcreateserial -passin pass:{password}

	Import rootCA and cert-signed to server keystore

keytool -keystore server.keystore.jks -alias CARoot -import -file rootCA.crt
keytool -keystore server.keystore.jks -alias els710 -import -file cert-signed

	If you have trusted certificates, you must import them into the JKS keystore as follows:

Create a keystore:

Complete:

	Certificate validity period;
	The name of the alias;
	The FQDN of the server;
	Server IP;

keytool -keystore client.keystore.jks -alias {alias_name} -validity {validity} -keyalg RSA -genkey

	Combine the certificate and key file into a certificate in p12 format:

Complete:

	your cert name;
	your key name;
	friendly name;
	CA cert file;

openssl pkcs12 -export -in {your_cert_name} -inkey {your_key_name} -out {your_pair_name}.p12 -name {friendly_name} -CAfile ca.crt -caname root

	Import the CA certificate into a truststore:

Complete:

	CA cert file;

keytool -keystore client.truststore.jks -alias CARoot -import -file {CAfile}

	Import the CA certificate into a keystore:

Complete:

	CA cert file.

keytool -keystore client.keystore.jks -alias CARoot -import -file {CAfile}

	Import the p12 certificate into a keystore:

Complete:

	Your p12 pair;
	Keystore password;

keytool -importkeystore -deststorepass {keystore_password} -destkeystore client.keystore.jks -srckeystore {your_pair_name}.p12 -srcstoretype PKCS12

Configuring Kafka Brokers¶

	In /opt/kafka/server.properties file set the following options:

Complete:

	Path to server keystore;
	Keystore password;
	Password for certificate key;
	Path to server truststore;
	Truststore password.

listeners=PLAINTEXT://localhost:9092,SSL://{FQDN}:9093
ssl.keystore.location={path_to_server_keystore}/server.keystore.jks
ssl.keystore.password={keysotre_passowrd}
ssl.key.password={key_password}
ssl.truststore.location={path_to_server_truststore}/server.truststore.jks
ssl.truststore.password={truststore_passowrd}
ssl.enabled.protocols=TLSv1.2
ssl.client.auth=required
security.inter.broker.protocol=SSL

	Restart the Kafka service

systemctl restart kafka

Configuring Kafka Clients¶

	Configure the output section in Logstash based on the following example:

Complete:

	Server FQDN;
	Path to client truststore;
	Truststore password.

output {
 kafka {
 bootstrap_servers => "{FQDN}:9093"
 security_protocol => "SSL"
 ssl_truststore_type => "JKS"
 ssl_truststore_location => "{path_to_client_truststore}/client.truststore.jks"
 ssl_truststore_password => "{password_to_client_truststore}"
 client_id => "host.name"
 topic_id => "Topic-1"
 codec => json
 }
}

	Configure the input section in Logstash based on the following example:

Complete:

	Server FQDN;
	Path to client truststore;
	Truststore password.

input {
 kafka {
 bootstrap_servers => "{}:port"
 security_protocol => "SSL"
 ssl_truststore_type => "JKS"
 ssl_truststore_location => "{path_to_client_truststore}/client.truststore.jks"
 ssl_truststore_password => "{password_to_client_truststore}"
 consumer_threads => 4
 topics => ["Topic-1"]
 codec => json
 tags => ["kafka"]
 }
}

Log retention for Kafka topic¶

The Kafka durably persists all published records—whether or not they have been consumed—using a configurable retention period. For example, if the retention policy is set to two days, then for the two days after a record is published, it is available for consumption, after which it will be discarded to free up space. Kafka’s performance is effectively constant with respect to data size so storing data for a long time is not a problem.

Event Collector¶

The Event Collector allows to get events from remote Windows computers and store them in the ITRS Log Analytics indexes. The destination log path for the events is a property of the subscription. The ITRS Log Analytics Event Collector allows to define an event subscription on an ITRS Log Analytics collector without defining the event source computers. Multiple remote event source computers can then be set up (using for example a group policy setting) to forward events to the ITRS Log Analytics. The Event Collector don’t require installation of any additional applications/agents on Windows source hosts.

Configuration steps¶

Installation of Event Collector¶

tar zxf wec_7x-master.tar.gz -C /opt/
mkdir /opt/wec
mv /opt/wec_7x-master/ /opt/wec/
mkdir /etc/wec
cp /opt/wec/sub_manager/config.yaml /etc/wec/config.yaml

Generate certificate¶

mkdir /opt/wec/certgen
cd /opt/wec/certgen
vim server-certopts.cnf

	Set DNS.1 and IP.1 for WEC server:

[req]
default_bits = 4096
default_md = sha256
req_extensions = req_ext
keyUsage = keyEncipherment,dataEncipherment
basicConstraints = CA:FALSE
distinguished_name = dn

[req_ext]
subjectAltName = @alt_names
extendedKeyUsage = serverAuth,clientAuth

[alt_names]
DNS.1 = wec.local.domain
IP.1 = 192.168.13.163

[dn]

	Set DNS.1 and IP.1 for client certificate:

vim client-certopts.cnf

[req]
default_bits = 4096
default_md = sha256
req_extensions = req_ext
keyUsage = keyEncipherment,dataEncipherment
basicConstraints = CA:FALSE
distinguished_name = dn

[req_ext]
subjectAltName = @alt_names
extendedKeyUsage = serverAuth,clientAuth

[alt_names]
DNS.1 = *local.domain

[dn]

	Generate the CA certificate and private key, next check fingerprint:

openssl genrsa -out ca.key 4096
openssl req -x509 -new -nodes -key ca.key -days 3650 -out ca.crt -subj '/CN=wec.local.domain/O=example.com/C=CA/ST=QC/L=Montreal'
openssl x509 -in ca.crt -fingerprint -sha1 -noout | sed -e 's/\://g' > ca.fingerprint

	Generate the client certificate and export it together with the CA in PFX format to be imported into the Windows certificate store:

openssl req -new -newkey rsa:4096 -nodes -out server.csr -keyout server.key -subj '/CN=wec.local.domain/O=example.com/C=CA/ST=QC/L=Montreal'
openssl x509 -req -in server.csr -out server.crt -CA ca.crt -CAkey ca.key -CAcreateserial -extfile server-certopts.cnf -extensions req_ext -days 365

	Generate the server certificate to be used by the WEC:

openssl req -new -newkey rsa:4096 -nodes -out client.csr -keyout client.key -subj '/CN=wec.local.domain/O=example.com/C=CA/ST=QC/L=Montreal'
openssl x509 -req -in client.csr -out client.crt -CA ca.crt -CAkey ca.key -CAcreateserial -extfile client-certopts.cnf -extensions req_ext -days 365
openssl pkcs12 -export -inkey client.key -in client.crt -certfile ca.crt -out client.p12

Event Collector Configuration¶

	Copy server certificate and server key to Event Collector installation directory:

cp server.crt server.key /opt/wec/sub_manager/certificates/

	Edit configuration file config.yaml

vim /etc/wec/config.yaml

	set the following options:

external_host: wec.local.domain
#check ca.fingerprint file
ca_fingerprint: 97DDCD6F3AFA511EED5D3312BC50D194A9C9FA9A
certificate: /opt/wec/sub_manager/certificates/server.crt
key: /opt/wec/sub_manager/certificates/server.key

	set the output for Event Collector to Logstash forwarding:

remote_syslog:
 # forward events to remote syslog server
 address: 192.168.13.170
 port: 5614

	set the output to saving events to local file:

outputfile: /var/log/wec/events-{:%Y-%d-%m}.log

	disable local syslog output:

local_syslog: false

	set the filter section:

filters:
 # source list

		- source: 'Security'
 filter: '*[System[(Level=1 or Level=2 or Level=3 or Level=4 or Level=0 or Level=5) and (EventID=4672 or EventID=4624 or EventID=4634)]]'

	 - source: 'Application'
 filter: '*[System[(Level=1 or Level=2 or Level=3 or Level=4 or Level=0 or Level=5)]]'

 - source: 'System'
 filter: '*[System[(Level=1 or Level=2 or Level=3 or Level=4 or Level=0 or Level=5)]]'

Install dependencies¶

	Python 3.8 installation:

sudo yum -y update
sudo yum -y groupinstall "Development Tools"
sudo yum -y install openssl-devel bzip2-devel libffi-devel
sudo yum -y install wget
wget https://www.python.org/ftp/python/3.8.3/Python-3.8.3.tgz
tar xvf Python-3.8.3.tgz
cd Python-3.8*/
./configure --enable-optimizations
sudo make altinstall
python3.8 --version

	Python requirements installation:

pip3.8 install PyYAML
pip3.8 install sslkeylog

Running Event Collector service¶

vim /etc/systemd/system/wec.service

[Unit]
Description=WEC Service
After=network.target

[Service]
Type=simple
ExecStart=/usr/local/bin/python3.8 /opt/wec/sub_manager/run.py -c /etc/wec/config.yaml
Restart=on-failure
RestartSec=42s
StandardOutput=syslog
StandardError=syslog
SyslogIdentifier=wecservice

[Install]
WantedBy=multi-user.target

systemctl daemon-reload
systemctl start wc

Windows host configuration¶

	Open the Microsoft Management Console (mmc.exe), select File -> Add/Remove Snap-ins, and add the Certificates snap-in.

	Select Computer Account.

	Right-click the Personal node, and select All Tasks > Import.

	Find and select the client certificate (client.p12) and import this file.

	The PKCS #12 archive contains the CA certificate as well.

	Move the CA certificate to the Trusted Root Certification Authorities node after the import.

	Give NetworkService access to the private key file of the client authentication certificate:

	To forward security logs:

	In CompMgmt.msc, under Local Users and Groups, click Groups > Event Log Readers to open Event Log Readers Properties.
	Add the “NETWORK SERVICE” account to the Event Log Readers group.

8.1. For domain controller use “Group Policy Manger Editor” and edit: “Default Domain Controller Policy”:

	From Computer Configuration > Policy, expand Windows Settings > Security Settings > Restricted Groups;
	From contest menu add: Add Group
	Add the following configuration:	Group = BUILTIN\Event Log Readers	Members = NT Authority\NETWORK SERVICE

	Make sure collector server is reachable from windows machine

	Run winrm qc and accept changes on windows machine

	Run winrm set winrm/config/client/auth @{Certificate="true"} on windows machint to enable certificate authentication

	Open gpedit.msc

	Under the Computer Configuration node, expand the Administrative Templates node, then expand the Windows Components node, and then select the Event Forwarding node.

	Select the SubscriptionManagers setting and enable it. Click the Show button to add a subscription (use the CA thumbprint you saved earlier):

Server=https://<FQDN of the collector>:5986/wsman/SubscriptionManager/WEC,Refresh=<Refresh interval in seconds>,IssuerCA=<Thumbprint of the root CA>

For example:

Server=HTTPS://logserver.diplux.com:5986/wsman/SubscriptionManager/WEC,Refresh=60,IssuerCA=549A72B56560A5CAA392078D9C38B52458616D2
5

NOTE: If you wish to set up multiple subscriptions because you want to forward Windows events to multiple event collectors (such as WEC), then you can do that here.

	Run the cmd console with administrative privileges and make following command

gpupdate /force

Logstash pipeline configuration¶

Create directory for Event Collector pipeline configuration files:

mkdir /etc/logstash/conf.d/syslog_wec

Copy the following Logstash configuration files to pipeline directory:

cp 001-input-wec.conf /etc/logstash/conf.d/syslog_wec/
cp 050-filter-wec.conf /etc/logstash/conf.d/syslog_wec/
cp 060-filter-wec-siem.conf /etc/logstash/conf.d/syslog_wec/
cp 100-output-wec.conf /etc/logstash/conf.d/syslog_wec/

Enabling Logstash pipeline¶

To enable the syslog_wec Logstash pipeline edit the pipelie.yml file:

vim /etc/logstash/pipeline.yml

Add the following section:

- pipeline.id: syslog_wec
 path.config: "/etc/logstash/conf.d/syslog_wec/*.conf"

And restart Logstash:

systemctl restart logstash

Elasticsearch template¶

Install the Elasticsearch template for Event Collector data index:

curl -ulogserver:logserver -X PUT "http://localhost:9200/_template/syslog_wec?pretty" -H 'Content-Type: application/json' -d@template_wec.json

Building the subscription filter¶

	Browse to Event Viewer

	Right click Subscriptions and create subscription

	Click on Select Events and choose the type of logs that you want, for example: Event Level, Event Logs, Include Exclude Event ID, Keyword, etc.

	Switch to XML view tab;

	Copy the value of the Select Path key, for example:

<QueryList>
 <Query Id="0" Path="Security">
 <Select Path="Security">*[System[(Level=1 or Level=2 or Level=3) and (EventID=4672 or EventID=4624 or EventID=4634)]]</Select>
 </Query>
</QueryList>

string to copy:

*[System[(Level=1 or Level=2 or Level=3) and (EventID=4672 or EventID=4624 or EventID=4634)]]

	Paste the above definition into the Event Collector configuration file in filters section:

vim /etc/wec/config.yaml

 filters:
 - source: 'Security'
 filter: '*[System[(Level=1 or Level=2 or Level=3) and (EventID=4672 or EventID=4624 or EventID=4634)]]'

Restart Event Collector service

systemctl restart wec

Cerebro Configuration¶

Configuration file: /opt/cerebro/conf/application.conf

	Authentication

 		auth = {
 		 type: basic
 		 settings: {
 		 username = "logserver"
 		 password = "logserver"
 		 }
 		}

	A list of known Elasticsearch hosts

 		hosts = [
 		 {
 		 host = "https://localhost:9200"
 		 name = "itrs-log-analytics"
 		 auth = {
 		 username = "logserver"
 		 password = "logserver"
 		 }
 		 }
]

 		play.ws.ssl {
 		 trustManager = {
 		 stores = [
 		 { type = "PEM", path = "/etc/elasticsearch/ssl/rootCA.crt" }
]
 		 }
 		}
 		play.ws.ssl.loose.acceptAnyCertificate=true

	SSL access to cerebro

 http = {
 port = "disabled"
 }
 https = {
 port = "5602"
 }

 # SSL access to cerebro - no self signed certificates
 #play.server.https {
 # keyStore = {
 # path = "keystore.jks",
 # password = "SuperSecretKeystorePassword"
 # }
 #}

 #play.ws.ssl {
 # trustManager = {
 # stores = [
 # { type = "JKS", path = "truststore.jks", password = SuperSecretTruststorePassword" }
 #]
 # }
 #}

	service restart

	systemctl start cerebro

	register backup/snapshot repository for Elasticsearch

 curl -k -XPUT "https://127.0.0.1:9200/_snapshot/backup?pretty" -H 'Content-Type: plication/ json' -d'
 {
 "type": "fs",
 "settings": {
 "location": "/var/lib/elasticsearch/backup/"
 }
 }' -u logserver:logserver

	login using curl/kibana

 curl -k -XPOST 'https://192.168.3.11:5602/auth/login' -H 'mimeType: application/ -www-form-urlencoded' -d 'user=logserver&password=logserver' -c cookie.txt
 curl -k -XGET 'https://192.168.3.11:5602' -b cookie.txt

Field level security¶

You can restrict access to specific fields in documents for a user role. For example: the user can only view specific fields in the Discovery module, other fields will be inaccessible to the user. You can do this by:

	You can do this by adding the index to the field includes or field excludes in the Create Role tab.

	Includes are only fields that will be visible to the user.
	Excludes are fields that the user cannot see.

	After that you will see new role in Role list tab.

	Add your user to new Role

You can now log in as a user with a new role, the user in the Discovery module should only see selected fields.

Changing default language for GUI¶

The GUI language can be changed as follows:

	Add .i18nrc.json to /usr/share/kibana/ directory:

{
 "translations": ["translations/ja-JP.json"]
}

	Upload a translation to /usr/share/kibana/translations/ja-JP.json directory

	Set the permission:

chown -R kibana:kibana /usr/share/kibana/translations/

	Set in kibana.yml file:

i18n.locale: "ja-JP"

	Restart:

systemctl restart kibana

	Finally the result should be as shown in the picture:

 Next

 Previous

 © Copyright 2023

 Revision fda41e8d.

 Built with Sphinx using a theme provided by Read the Docs.

 Read the Docs
 v: 7.2.0

 	Versions
	latest
	7.2.0
	7.1.2
	7.1.1
	7.1.0
	7.0.6
	7.0.5
	7.0.4
	7.0.3
	7.0.2
	7.0.1

 	Downloads
	pdf
	html
	epub

 	On Read the Docs
	
 Project Home

	
 Builds

 Free document hosting provided by Read the Docs.

